

Project Vision

Slash fuel consumption and emissions by developing a high-performance Aviation with Low Carbon and reformer/fuel cell element featuring SOA fuel cell materials and novel weight-saving architectures that can be integrated into a gas turbine's flow path to exploit turbine/fuel cell synergies.

Range Extenders for Electric High Efficiency (REEACH)

REEACH / ASCEND / CABLES **Annual Program Review Meeting** June 28-30, 2022

Brief REEACH Project Overview

Team member	Location	Role in project
Christopher Cadou	University of Maryland	PI; Overall system modeling, pressurized ATR/SOFC testing
Eric Wachsman	University of Maryland	High power density fuel cell development
Greg Jackson	Colorado School of Mines	Co-I; ATR/SOFC design and modeling
Robert Braun	Colorado School of Mines	ATR/SOFC design and modeling; Technoeconomic analysis
Tyrone Vincent	Colorado School of Mines	ATR/SOFC controls
Charles Lents	Raytheon Technology Research Center	Large-scale ATR/SOFC testing, turbomachinery modeling and design, business development

Christopher Cadou Eric Wachsman

Greg Jackson

Robert Braun

Tyrone Vincent Charles Lents

Innovation

Project Objectives

Key component-level innovations

- Highly integrated SOFC/reformer/heat exchanger
- Low-mass interconnect design →50% lower weight

Novel aspects compared to SOA

- High-power SOFCs offer >2 W/cm² at < 650°C (SOA ~1 W/cm²)
- Proprietary stack design to lower interconnect mass
- Compliant seals to permit rapid heating

► Target performance (OPR=15, 13 MW w/ 1.8 MW_{elec} SOFC)

- Spec. Energy = 4.5kWhr/kg ($\geq 3kWhr/kg$)
- Spec. Power = 3.0 kW/kg ($\ge 0.75 \text{kW/kg}$)
- Fuel Cost = \$0.14/kWhr ($\le \$0.15/kWhr$)
- Capital Cost = \$715/kW (< \$1000/kW)
- Reformer/ATR Spec. Power > 1.5 kW/kg

Tools being developed to support project

- Analytical and NPSS system models
- High-fidelity MIEC stack models for high-P performance
- Pressurized SOFC test rig

High Power Cell Development (25 cm² Cell)

- ▶ Developed repeatable process for button and larger (25 cm²) format cells
 - All made by same tape casting, laminating, sintering, & spray coating processes
 - 25 cm² cells exceed flatness of commercial cells
- ▶ Button cells achieved 4 W/cm² in H₂ and exceed performance milestones for reformate fuel

▶ 25 cm² cell testing limited by test fixture capability to operate at high currents,

modifications to fixture in process

July 28, 2022

System Analysis

Integration of SOFC/Autothermal Reformer/Heat Exchanger

- High-power density electrochemical cells that light off with inlet temperatures < 600°C</p>
- Low-mass interconnect and single-body integration of upstream fuel processing and heat exchange
- Stack-level models for design of reliable anode flow splits to support product H₂O recycling
- Compliant seals for good thermal response and high-power density performance > 1.6 kW_{elec}/kg

Task Outline & Technical Objectives

- Develop high power SOFC 25cm² cells and demonstrate a pathway to 100cm² high power redox tolerant cells at ≤650°C
 - Achieved >1.4W/cm² @ 0.5V on reformate in GDC button cells for 50 hrs
 - Achieved >0.9W/cm² @ 0.75V in 25cm² planar GDC cells
- Demonstrate a 1.0 kW_e integrated SOFC/ATR using COTS cells
 - Specific power > $1.2 \text{ kW}_e/\text{kg}$ at 0.75 V/cell
 - $p \le 15 bar$
 - $-T \leq 650 \, \mathscr{C}$
 - Degradation rate < 2%/hr over 6 hrs.

Risk Update

#	Risk
1	ATR/SOFC Integration
2	High power density SOFC
3	Inadequate anode exhaust/thermal control
4	Excessive anode leakage
5	Component failure due to CTE mismatch
6	ATR/SOFC failure debris damages turbomachines
7	Manufacturers perceive concept as too risky
8	Capital and maintenance costs too high

	Almost Certain					
	Likely				2	
Likelihood	Moderate			4	1 7 3	
	Unlikely			6	6	
	Rare				8	
		Insignificant	Minor	Moderate	Major	Catastrophic
		Consequences				

Technology to Market

Life Cycle Cost Sensitivity Analysis Results

	LCC (\$k)	$\%$ Δ
Base	57,244	
10% reduction in OEM cost	56,314	1.6%
10% reduction in weight	57,057	0.3%
10% reduction in yearly maintenance cost	57,155	0.2%
2% increase in efficiency	56,341	1.6%

Commercialization

Manufacturing SOFCs and SOECs.

Integration and path to market

Potential Applications

	SA Parallel	SA Aux Prop	Regional
Rating	2000 kW	2 X 3600 kW	1500 kW
PD & Eff	2 kW/kg	1.7 kW/kg	3 kW/kg
Eff	60%	64%	60%
FB benefit	5%	6-14%	15%

SA – single aisle, PD – power density, FB – fuel burn

Regional Parallel

AAM

SA Aux Propulsor

......

Image Credit: Electra.aero

Needs and Potential Partnerships

- Current Needs
 - Low-mass interconnect fabrication with robust SOFC-compatible alloys
 - Reliable ejector design for high-T anode exhaust recycling
 - NPSS community of practice
- Post completion needs
 - Additional market opportunities
- Capabilities
 - Stack and system modeling
 - NPSS expertise
 - Pressurized SOFC testing

Q & A

https://arpa-e.energy.gov

